Нематуллоев Олимджон Акбарович

О РАЗРЕШИМОСТИ И СПЕКТРАЛЬНЫХ СВОЙСТВАХ ВАРИАЦИОННОЙ ЗАДАЧИ ДИРИХЛЕ ДЛЯ ВЫРОЖДАЮЩИХСЯ ЭЛЛИПТИЧЕСКИХ ОПЕРАТОРОВ В ОГРАНИЧЕННОЙ ОБЛАСТИ

01.01.02 - Дифференциальные уравнения, динамические системы и оптимальное управление

Автореферат

диссертации на соискание ученой степени кандидата физико-математических наук

Душанбе 2016

Работа выполнена в Институте математики имени А.Джураева Академии наук Республики Таджикистан

Научный руководитель: доктор физико-математических наук,

профессор, Институт математики

имени А.Джураева АН РТ,

зам. директора по научной работе

Исхоков Сулаймон Абунасрович

Официальные оппоненты: Рудой Евгений Михайлович,

> доктор физико-математических наук, доцент, ФГБУН Институт гидродинамики им. М.А.Лаврентьева Сибирского отделения

Российской академии наук,

заместитель директора по научной работе

Шарипов Бобоали,

кандидат физико-математических наук, доцент, Институт предпринимательства и сервиса Республики Таджикистан,

доцент кафедры математики в экономике

Худжандский государственный университет Ведущая организация:

имени академика Бабаджана Гафурова

Защита состоится 22 апреля 2016 г. в 14 ч. 00 мин. на заседании Диссертационного совета Д 047. 007.02 при Институте математики имени А.Джураева Академии наук Республики Таджикистан по адресу: 734063, г.Душанбе, ул. Айни 299/4.

С диссертацией можно ознакомиться в библиотеке Института математики имени А.Джураева АН Республики Таджикистан, а также на сайте http://www.mitas.tj.

Автореферат разослан " "

Ученый секретарь диссертационного совета Д 047. 007.02 доктор физико-математических наук

Mejend

Каримов У.Х.

Общая характеристика работы

Актуальность темы. Работа посвящена исследованию фредгольмовой разрешимости и изучению свойств собственных функций и собственных значений вариационной задачи Дирихле для вырождающихся эллиптических уравнений высшего порядка.

Одно из основных направлений современной теории уравнений в частных производных посвящено исследованию разрешимости краевых задач для различных классов вырождающихся эллиптических уравнений. Интерес к таким исследованиям обусловлен тем, что математическое моделирование ряда прикладных задач в теории малых изгибов поверхностей вращения, в теории оболочек, в газовой динамике и других разделах механики приводит к краевым задачам для вырождающихся эллиптических уравнений.

Существуют разнообразные способы вырождения эллиптических уравнений, и поэтому для изучения краевых задач для таких уравнений применяются разные методы. Применяемый нами метод основан на элементах теории вложения весовых функциональных пространств и теории полуторалинейных форм. Этот метод разрабатывался и совершенствовался в работах С.М. Никольского, Л.Д. Кудрявцева, П.И. Лизоркина, С.В. Успенского, К.Х. Бойматова, Х. Трибеля, А. Куфнера, Н.В. Мирошина, Б.Л. Байдельдинова, С.А. Исхокова и др. 1—4.

Основная часть научных публикаций по краевым задачам для эллиптических уравнений с вырождением относится к случаю, когда коэффициенты рассматриваемых дифференциальных уравнений имеют форму произведения ограниченной функции и функции, которая характеризует вырождение. Существуют лишь отдельные работы, в которых исследовалась разрешимость вариационной задачи Дирихле с помощью весового аналога неравенства Гординга для вырождающихся эллиптических уравнений с младшими коэффициентами из весовых L_p — пространств. Наши

 $^{^1{\}rm T}$ рибель X. Теория интерполяции, функциональные пространства, дифференциальные операторы.- М.: Мир.- 1980.- 664 с.

 $^{^2}$ Никольский С.М., Лизоркин П.И., Мирошин Н.В. Весовые функциональные пространства и их приложения к исследованию краевых задач для вырождающихся эллиптических уравнений.// Известия Вузов. Математика. 1988, №8, с.4 - 30.

 $^{^3}$ Исхоков С.А. Неравенство Гординга для эллиптических операторов с вырождением // Математические заметки. 2010. Т. 87. №2. С. 201 – 216.

 $^{^4}$ Исхоков С.А., Гадоев М.Г., Якушев И.А. Неравенство Гординга для эллиптических операторов высокого порядка с нестепенным вырождением // Доклады Академии наук (Россия). 2012. Т. 443, №3. с. 286-289.

исследования также относятся к этому малоизученному случаю.

Цель работы. Целью диссертационной работы является исследование разрешимости и изучение свойств собственных функций и собственных значений вариационной задачи Дирихле с однородными и неоднородными граничными условиями для эллиптических операторов высшего порядка в ограниченной области n-мерного евклидова пространства со степенным вырождением на границе области.

Методы исследования. Применяемый в диссертации метод основан на элементах функционального анализа и теории весовых функциональных пространств (теоремы вложения, эквивалентные нормировки, прямые и обратные теоремы о следах, теоремы о плотности гладких функций и т.д.).

Научная новизна. Основные результаты диссертации являются новыми и заключаются в следующем:

- 1. Доказана теорема об однозначной разрешимости вариационной задачи Дирихле с однородными граничными условиями для эллиптических уравнений высшего порядка в ограниченной области со степенным вырождением на границе.
- 2. Найдены достаточные условия однозначной разрешимости вариационной задачи Дирихле с неоднородными граничными условиями для эллиптических уравнений высшего порядка в ограниченной области, коэффициенты которых имеют степенное вырождение на границе и принадлежат некоторым весовым L_p -пространствам.
- 3. Исследована фредгольмовая разрешимость вариационной задачи Дирихле с однородными и неоднородными граничными условиями для эллиптических уравнений высшего порядка в ограниченной области, коэффициенты которых имеют степенное вырождение на границе и принадлежат некоторым весовым L_p -пространствам.
- 4. Доказана асимптотическая формула, характеризующая рост собственных значений вырождающегося эллиптического оператора на бесконечности.

Теоретическая и практическая ценность. Результаты, полученные в диссертации, носят теоретический характер. Они могут послужить основой для дальнейших теоретических исследований в теории вложения

весовых функциональных пространств, в теории краевых задач для вырождающихся дифференциальных уравнений.

Практическая ценность работы определяется прикладной значимостью вырождающихся дифференциальных уравнений в решении прикладных задач механики и других разделов физики.

Апробация результатов. Основные результаты диссертации докладывались и неоднократно обсуждались автором на семинарах отдела теории функций и функционального анализа Института математики АН Республики Таджикистан под руководством д.ф.-м.н., профессора С.А. Исхокова (2011 – 2015), на общеинститутском семинаре Института математики АН Республики Таджикистан под руководством д.ф.-м.н. членкорреспондента АН РТ, проф. З.Х. Рахмонова (2015), на семинаре кафедры математического анализа Курган-Тюбинского Госуниверситета им. Н. Хусрава (2012 – 2015), на международной научно-практической конференции "Наука и инновационные разработки - северу", посвященной 20-летию Политехнического института (филиалу) Северо-Восточного Федерального университета им. М.К.Аммосова (март 2014, Мирный), на Международной научной конференции "Современные проблемы математики и её преподавания", Худжанд, июнь 2014 г., на международной конференции "Математический анализ, дифференциальные уравнения и теория чисел", Душанбе, 29- 30 октября 2015 г.

Публикации. Основные результаты диссертации опубликованы в 3 статьях в рецензируемых научных журналах и сборниках, а также отражены в тезисах двух докладов на научных конференциях список которых приведен в конце автореферата. В работах, написанных совместно с С.А. Исхоковым, соавтору принадлежат постановка задач и выбор метода доказательств результатов.

Структура и объём работы. Диссертация состоит из введения, трех глав и списка литературы. Работа изложена на 110 страницах компьютерного набора. Библиография насчитывает 71 наименований.

Содержание диссертации

Во введении дается краткий исторический обзор результатов по рассматриваемой проблеме, обосновывается актуальность темы. Приводится

также краткое содержание диссертации с указанием основных результатов.

В диссертации использована двойная нумерация параграфов, причем первая цифра означает номер главы, вторая — номер параграфа в главе. Для нумерации теорем, лемм и формул используется тройная нумерация, где первые две означают номер соответствующего параграфа.

Первая глава диссертации имеет вспомогательный характер, в ней, в основном, излагаются известные результаты и результаты, которые в той или иной форме ранее опубликованы. Некоторые результаты приведены с подробными доказательствами с целью полноты изложения материалов диссертации и для удобства чтения. Она состоит из трех параграфов. В первом параграфе введены определения основных нормированных пространств функций и сформулированы их основные свойства.

Пусть R^n – n-мерное евклидово пространство точек $x=(x_1,\,x_2,\,\cdots,\,x_n)$ и пусть Ω – ограниченная область в R^n с (n-1)-мерной границей $\partial\Omega$. Запись $\partial\Omega\in C^s$, где s – натуральное число, означает, что локально граница $\partial\Omega$ описывается функциями, которые имеют непрерывные производные до порядка s включительно, а запись $\partial\Omega\in C^{s+\varepsilon}$, где s – натуральное число и $\varepsilon\in(0,1)$, означает, что локально $\partial\Omega$ описывается функциями, производные порядка s которых удовлетворяют условию Гельдера с по-казателем ε .

Символом $\rho(x)$ обозначим регуляризованное расстояние точки $x \in \Omega$ до $\partial\Omega$, то есть достаточно гладкую функцию со следующими свойствами

$$c_1 d(x) \le \rho(x) \le c_2 d(x), \quad d(x) = \operatorname{dist}(x, \partial \Omega),$$

$$|\rho^{(k)}(x)| \le M_k \rho^{1-|k|}(x),$$

для всех $x \in \Omega$ и любого мультииндекса k; положительные числа c_1, c_2, M_k не зависят от x. Если $k = (k_1, k_2, \cdots, k_n)$ – мультииндекс, то $|k| = k_1 + k_2 + \cdots + k_n$ – длина мультииндекса и

$$u^{(k)}(x) = \frac{\partial^{|k|} u(x)}{\partial x_1^{k_1} \partial x_2^{k_2} \cdots \partial x_n^{k_n}}.$$

Пусть r — целое неотрицательное число, α , p — вещественные числа и $1 \leq p < +\infty$. Символом $W^r_{p;\,\alpha}(\Omega)$ обозначим пространство всех измеримых в Ω функций u(x), определенных на Ω , имеющих в этой области все обобщенные в смысле С.Л. Соболева производные $u^{(k)}(x)$ порядка $\leq r$ с конечной нормой

$$||u; W_{p;\alpha}^{r}(\Omega)|| = \left\{ ||u; L_{p;\alpha}^{r}(\Omega)||^{p} + \int_{\Omega} |u(x)|^{p} dx \right\}^{1/p},$$
 (1)

где

$$||u; L_{p;\alpha}^r(\Omega)|| = \left\{ \sum_{|k|=r} \int_{\Omega} \rho^{\alpha p}(x) |u^{(k)}(x)|^p dx \right\}^{1/p}.$$

Классы $W^r_{p;\alpha}(\Omega)$ являются банаховыми пространствами с нормой (1) и при $\alpha=0$ совпадают с обычными пространствами С. Л. Соболева $W^r_p(\Omega)$. Если p=2, то класс $W^r_{2,\alpha}(\Omega)$ является гильбертовым пространством. При r=0 класс $L^r_{p;\alpha}(\Omega)$ обозначим через $L_{p;\alpha}(\Omega)$.

Символом $C_0^\infty(\Omega)$ обозначим класс бесконечно дифференцируемых финитных в Ω функций. Если B – некоторое нормированное пространство, содержащее $C_0^\infty(\Omega)$, то через $\overset{\circ}{B}$ обозначим замыкание множества $C_0^\infty(\Omega)$ в норме пространства B. Символы $B_p^\nu(\Omega) = B_{pp}^\nu(\Omega)$ и $B_p^\nu(\partial\Omega)$ обозначают классы функций О.В. Бесова, заданные на Ω и $\partial\Omega$ соответственно.

Первый результат типа теорем вложения для пространств $W_{p;\alpha}^r(\Omega)$ был получен В.И. Кондрашовым (1938). Систематическое исследование пространств $W_{p;\alpha}^r(\Omega)$ принадлежит Л.Д. Кудрявцеву (1959). Оно развивалось и дополнялось работами многих математиков, среди которых С.М. Никольский, О.В. Бесов, Я. Кадлец, А. Куфнер, Х. Трибель и др. Более подробную библиографию по этому вопросу можно найти в обзорной работе С.М. Никольского, П.И. Лизоркина, Н.В. Мирошина [2] (см. сноску на стр. 3).

Ниже сформулируем некоторые известные результаты о плотности класса $C_0^\infty(\Omega)$ в пространстве $W^r_{p;\alpha}(\Omega)$, описание замыкания класса $C_0^\infty(\Omega)$ в пространстве $W^r_{p;\alpha}(\Omega)$ (в случае, когда $C_0^\infty(\Omega)$ не плотен в этом пространстве), прямую и обратную теоремы о следах для пространства $W^r_{p;\alpha}(\Omega)$.

Теорема 1.1.1. Множество $C_0^{\infty}(\Omega)$ плотно в пространстве $W_{p;\,\alpha}^r(\Omega)$ в том и только в том случае, если $\alpha \leq -1/p$ или $\alpha \geq r-1/p$.

Теорема 1.1.2. Пусть m – целое число; $0 \le m \le r$, $\alpha_m \ge \alpha - m > -1/p$. Тогда справедливо вложение

$$W^r_{p;\alpha}(\Omega) \to W^{r-m}_{p;\alpha-m}(\Omega) \to W^{r-m}_{p;\alpha_m}(\Omega)$$

с соответствующими оценками норм.

Теорема 1.1.3. *Пусть*

$$-\frac{1}{p} < \alpha < r - \frac{1}{p},\tag{2}$$

 s_0 – целое число, удовлетворяющее неравенствам

$$r - \alpha - \frac{1}{p} \le s_0 < r - \alpha + 1 - \frac{1}{p},$$
 (3)

граница $\partial\Omega$ принадлежит классу $C^{s_0+1+\varepsilon}$, где $\varepsilon \in (0,1)$. Тогда справедливо вложение

$$W_{p;\alpha}^r(\Omega) \to B_p^{r-\alpha-1/p}(\partial\Omega).$$

Справедлива также следующая обратная теорема о следах.

Теорема 1.1.4. Пусть выполняется условие (2), целое число s_0 определено неравенствами (3), $\partial \Omega \in C^{s_0+1+\varepsilon}$, $\varepsilon \in (0,1)$. Тогда если заданы функции

$$\varphi_s \in B_p^{r-\alpha-1/p-s}(\partial\Omega), \quad s = 0, 1, \dots, s_0 - 1,$$
(4)

то существует функция $u\in W^r_{p;\,\alpha}(\Omega)$, для которой выполнены равенства

$$\frac{\partial^s u}{\partial n^s}\Big|_{\partial\Omega} = \varphi_s, \quad s = 0, 1, \cdots, s_0 - 1$$

и справедливы оценки

$$||u; W_{p;\alpha}^r(\Omega)|| \le C \sum_{s=0}^{s_0-1} ||\varphi_s; B_p^{r-\alpha-1/p-s}(\partial\Omega)||,$$

rде число C>0 не зависит от набора функций (4).

Символом $\overset{\circ}{W}_{p;\alpha}^{r}(\Omega)$ обозначим замыкание класса $C_0^{\infty}(\Omega)$ в норме (1) пространства $W_{p;\alpha}^{r}(\Omega)$.

Теорема 1.1.5. Пусть $-1/p < \alpha < r - 1/p$ и граница $\partial \Omega$ удовлетворяет условиям теоремы 1.1.4. Тогда выполняется равенство

$$\stackrel{\circ}{W}_{p;\alpha}^{r}(\Omega) = \left\{ u \in W_{p;\alpha}^{r}(\Omega) : \frac{\partial^{s} u}{\partial n^{s}} \middle|_{\partial\Omega} = 0, s = 0, 1, 2, \cdots, s_{0} - 1 \right\}, \quad (5)$$

где $\partial/\partial n$ – производная по внутренней нормали, а целое число s_0 определено неравенствами (3).

Во многих рассмотрениях в спектральной теории дифференциальных операторов, область определения дифференциальных операторов совпадает с функциональным пространством $W^r_{p;\,\alpha}(\Omega)$ и для доказательства

дискретности спектра этих операторов применяется следующая теорема о компактности вложения классов $W^r_{p;\,\alpha}(\Omega)$.

Теорема 1.1.9. Пусть $1 \leq p < \infty$, а r и m – целые числа, удовлетворяющие условию $0 \leq m < r$, $-1/p < \alpha \leq r$. Тогда вложение $W^r_{p;\alpha}(\Omega) \to W^m_{p;\beta}(\Omega)$ компактно в том и только том случае, если $r-\alpha > m-\beta$.

Во втором параграфе первой главы доказаны несколько вспомогательных неравенств, которые в последующих параграфах применяются в процессе доказательства основных результатов работы. Основным результатом этого параграфа является следующая лемма:

Лемма 1.2.3. Пусть $|k| \le r$, $|l| \le r$ и $|k| + |l| \le 2r - 1$. Определим числа λ_{kl} , δ_{kl} посредством следующих соотношений

$$\frac{1}{\lambda_{kl}} = \begin{cases} 1 - \frac{2r - |k| - |l|}{n} + \varepsilon, & n - 2(r - |k|) > 0, \ n - 2(r - |l|) > 0; \\ 1 - \frac{r - |k|}{n} + \varepsilon, & n - 2(r - |k|) > 0, \ n - 2(r - |l|) \le 0; \\ 1 - \frac{r - |l|}{n} + \varepsilon, & n - 2(r - |k|) \le 0, \ n - 2(r - |l|) > 0; \\ \text{любое число} \le 1, & n - 2(r - |k|) \le 0, \ n - 2(r - |l|) \le 0, \end{cases}$$

$$\delta_{kl} = 2\alpha + n - 2r + |k| + |l| - \frac{n}{\lambda_{kl}}.$$

Тогда для любого $\tau, \, 0 < \tau < 1, \, u \, \textit{всех} \, v \in C_0^\infty(\Omega)$ справедливо неравенство

$$\left\{ \int_{\Omega} \left(\rho^{\delta_{kl}}(x) |v^{(k)}(x)v^{(l)}(x)| \right)^{\lambda_{kl}} dx \right\}^{1/\lambda_{kl}} \leq \\
\leq \tau \left\| v; L_{2;\alpha}^{r}(\Omega) \right\|^{2} + C_{0}\tau^{-\mu} \left\| v; L_{2;\alpha-r}(\Omega) \right\|^{2},$$

 $r \partial e \mu$ – некоторое положительное число.

В третьем параграфе первой главы доказывается одно весовое неравенство, которое является аналогом неравенства Гординга для равномерно эллиптических операторов.

Рассматривается следующий дифференциальный оператор

$$(Lu) = \sum_{|k|,|l| \le r} (-1)^{|l|} \left(\rho^{2\alpha - 2r + |k| + |l|}(x) a_{kl}(x) u^{(k)}(x) \right)^{(l)}, \tag{6}$$

где r — натуральное, α — вещественное числа, $k=(k_1,\,k_2,\,\ldots,\,k_n),\,l=(l_1,\,l_2,\ldots,\,l_n)$ — мультииндексы. Предполагается, что коэффициенты $a_{kl}(x)$ являются комплекснозначными.

С оператором (6) связана следующая полуторалинейная форма

$$B[u, v] = \sum_{|k|, |l| \le r} \int_{\Omega} p_k(x) p_l(x) a_{kl}(x) u^{(k)}(x) \overline{v^{(l)}(x)} dx, \tag{7}$$

где $p_k(x) = \rho^{\alpha - r + |k|}(x)$.

Теорема 1.3.1. Пусть выполнены условия:

I) коэффициенты $a_{kl}(x)$ формы (7) $npu\ |k| = |l| = r$ непрерывны в $\overline{\Omega}$ и удовлетворяют следующему условию эллиптичности

Re
$$\sum_{|k|=|l|=r} a_{kl}(x)\xi^k \xi^l \ge c_0 |\xi|^{2r}$$

для всех $x \in \Omega$, $\xi \in \mathbb{R}^n$; c_0 – положительная постоянная независящая от x, ξ ;

II) коэффициенты $a_{kl}(x)$ $npu\ |k|,\ |l| \le r\ u\ |k| + |l| \le 2r - 1$ npuнадле- экат пространству $L_{p_{kl};-n/p_{kl}}(\Omega)$, $r\partial e$

$$p_{kl} = \begin{cases} q_{kl} & npu \ |k| \le r - 1, \ |l| \le r \\ q_{lk} & npu \ |k| = r, \ |l| \le r - 1 \end{cases}$$

а числа q_{kl} определяются соотношениями:

$$\begin{split} \frac{n}{2r-|k|-|l|} < q_{kl} &\leq \frac{n}{r-|l|}, \, e c \pi u \,\, n > 2(r-|k|), \,\, n > 2(r-|l|); \\ \frac{n}{r-|k|-\varepsilon_1 n} < q_{kl}, \,\, 0 < \varepsilon_1 < \frac{1}{2} \,\, e c \pi u \,\, n > 2(r-|k|), \,\, n \leq 2(r-|l|); \end{split}$$

$$q_{kl} = \begin{cases} \frac{n}{r - |l| + \varepsilon_2 n}, \ 0 < \varepsilon_2 < \frac{1}{2} \ \text{если } n \le 2(r - |k|), \ n > 2(r - |l|), \end{cases}$$
 любое конечное число >1, если $n \le 2(r - |k|), \ n \le 2(r - |l|).$

Тогда существуют такие постоянные $C_1>0$ и $C_2\geq 0$, что

$$\operatorname{Re} B[u, u] \ge C_1 \|u, W_{2;\alpha}^r(\Omega)\|^2 - C_2 \|u, L_{2;\alpha-r}(\Omega)\|^2$$
 (8)

для всех $u \in C_0^{\infty}(\Omega)$.

Вторая глава диссертационной работы посвящена приложению весового неравенства Гординга (8). Она состоит из двух параграфов. В первом параграфе изучается однозначная разрешимость однородной вариационной задачи Дирихле для эллиптических операторов в ограниченной области со степенным вырождением на границе. Во втором параграфе доказана теорема об однозначной разрешимости вариационной задачи Дирихле с неоднородными граничными условиями для эллиптических операторов высшего порядка в ограниченной области, которые имеют степенное вырождение на границе.

Рассмотрим дифференциальное уравнение

$$(Lu)(x) \equiv \sum_{|k|, |l| \le r} (-1)^{|l|} \left(p_k(x) p_l(x) a_{kl}(x) u^{(k)}(x) \right)^{(l)} = f(x) \ (x \in \Omega), \quad (9)$$

где $p_k(x) = \rho^{\alpha - r + |k|}(x)$ и $a_{kl}(x)$ - комплекснозначные функции, на которых ниже накладываются некоторые условия.

Если уравнение (9) умножаем на $\overline{v(x)}$, где $v \in C_0^\infty(\Omega)$, и интегрируем по $x \in \Omega$, то после интегрирования по частям приходим к равенству

$$B[u, v] \stackrel{\text{def}}{=} \sum_{|k|, |l| \le r} \int_{\Omega} p_k(x) p_l(x) a_{kl}(x) u^{(k)}(x) \overline{v^{(l)}(x)} dx = \int_{\Omega} f(x) \overline{v(x)} dx \quad (10)$$

для всех $v \in C_0^{\infty}(\Omega)$.

Любое решение u(x) уравнения (10) называется обобщенным решением уравнения (9). Поэтому вопрос о существовании обобщенных решений уравнения (9) связан с полуторалинейной формой (7). Забегая вперед, отметим, что в наших условиях форма B[u, v] по непрерывности определяется на всех $u, v \in \overset{\circ}{W} \overset{r}{_{2:\alpha}}(\Omega)$.

В первом параграфе второй главы исследуется разрешимость следующей вариационной задачи Дирихле, связанной с формой (7).

Задача D_{λ} . Для заданного функционала $F \in \left(\stackrel{\circ}{W}_{2;\alpha}^{r}(\Omega)\right)'$ требуется найти решение U(x) уравнения

$$B[U, v] + \lambda \int_{\Omega} \rho^{2\alpha - 2r}(x)U(x)\overline{v(x)}dx = \langle F, v \rangle \qquad (\forall v \in C_0^{\infty}(\Omega)), \qquad (11)$$

принадлежащее пространству $\stackrel{\circ}{W}_{2;\,\alpha}^{r}(\Omega)$.

Разрешимость задачи D_{λ} ранее исследовалась в работах С.М. Никольского, П.И. Лизоркина^{5,6} Н.В. Мирошина⁷, Б.Л. Байдельдинова⁸, С.А. Исхокова⁹ С.А. Исхокова, А.Я. Кужмуратова¹⁰ и др. в предположении, что коэффициенты $a_{kl}(x)$ удовлетворяют следующему условию эллиптичности

$$\operatorname{Re} \sum_{|k|,|l| \le r} p_k(x) p_l(x) a_{kl}(x) \zeta_k \overline{\zeta_l} \ge c_0 \rho^{2\alpha}(x) \sum_{|k| = r} |\zeta_k|^2$$
(12)

для всех $x \in \Omega$ и любого набора комплексных чисел $\{\zeta_k\}_{|k| \le r}$. В отличие от этого, здесь мы предполагаем выполнение более слабого чем (12) условия (см. условие I) теоремы 1.3.1).

Теорема 2.1.1. Пусть выполнены все условия теоремы 1.3.1.

Тогда существует число $\lambda_0 \geq 0$ такое, что при $\lambda \geq \lambda_0$ для любого заданного функционала $F \in \left(\stackrel{\circ}{W}_{2;\,\alpha}^r(\Omega)\right)'$ существует единственное решение $U(x) \in \stackrel{\circ}{W}_{2;\,\alpha}^r(\Omega)$ задачи D_{λ} и при этом выполняется оценка

$$||U; W_{2;\alpha}^{r}(\Omega)|| \le M_0 ||F; \left(\stackrel{\circ}{W}_{2;\alpha}^{r}(\Omega) \right)'||, \qquad (13)$$

где число $M_0>0$ не зависит от выбора функционала F и от λ .

Далее в первом параграфе второй главы доказывается следующая теорема о разрешимости задачи D_{λ} при $\lambda=0$.

Теорема 2.1.3. Пусть выполнены все условия теоремы 1.3.1 и пусть кроме того

III) существует положительное число M_0 такое, что

$$\int_{\Omega} \rho^{2\alpha - 2r}(x)|v(x)|^2 dx \le M_0 \operatorname{Re} B[v, v]$$

 $^{^5}$ Лизоркин П.И., Никольский С.М. Коэрцитивные свойства эллиптического уравнения с вырождением. Вариационный метод //Труды Математического института им. В. А. Стеклова АН СССР. 1981, т.157, с.90 – 118.

 $^{^6}$ Лизоркин П.И., Никольский С.М. Коэрцитивные свойства эллиптического уравнения с вырождением и обобщенной правой частью //Труды Математического института им. В. А. Стеклова АН СССР. 1983, т.161, с.157 – 183.

⁷Мирошин Н.В. Вариационная задача Дирихле для вырождающегося на границе эллиптического оператора // Дифференциальные уравнения, 1988, т.24, №3, с.455 – 464.

 $^{^8}$ Байдельдинов Б. Л. Об аналоге первой краевой задачи для эллиптических уравнений с вырождением. Метод билинейных форм //Труды Математического института им. В. А. Стеклова АН СССР. 1984, т.170, с. 3-11.

 $^{^{9}}$ Исхоков С.А. О гладкости решения вырождающихся дифференциальных уравнений // Дифференциальные уравнения. 1995, т. 31, №4, стр. 641-653.

 $^{^{10}}$ Исхоков С.А., Кужмуратов А.Я. О вариационной задаче Дирихле для вырождающихся эллиптических операторов // Доклады Академии наук (Россия), 2005, Том 403, №2, стр. 165-168.

для всех $v \in C_0^{\infty}(\Omega)$.

Тогда для любого заданного функционала $F \in \left(\overset{\circ}{W}_{2;\alpha}^{r}(\Omega)\right)'$ существует единственное решение $U(x) \in \overset{\circ}{W}_{2;\alpha}^{r}(\Omega)$ задачи D_{λ} при $\lambda = 0$ и при этом выполняется оценка (13).

Далее предполагается, что $-1/2 < \alpha < r - 1/2$ и целое число s_0 такое, что

 $r - \alpha - \frac{1}{2} \le s_0 < r - \alpha + \frac{1}{2}.$

Рассматривается следующая вариационная задача Дирихле с однородными граничными условиями:

Задача D'_{λ} . Для заданного функционала $F \in \left(\stackrel{\circ}{W}_{2,\alpha}^{r}(\Omega)\right)'$ требуется найти решение U(x) уравнения (11), принадлежащее пространству $W^{r}_{2,\alpha}(\Omega)$ и удовлетворяющее следующим граничным условиям:

$$\left. \frac{\partial^s U}{\partial n^s} \right|_{\partial \Omega} = 0, \ s = 0, 1, 2, \cdots, s_0 - 1,$$

где $\partial/\partial n$ – производная по направлению внутренней нормали.

Согласно теореме 1.1.5, если $-1/2 < \alpha < r - 1/2$ и граница $\partial\Omega$ области Ω принадлежит классу $C^{s_0+1+\varepsilon}$, где ε – некоторое число из интервала (0,1), то выполняется равенство (5). Следовательно, в этом случае задачи D_{λ} и D_{λ}' эквивалентны и поэтому для изучения разрешимости задачи D_{λ}' можно применить теоремы 2.1.1 и 2.1.3. Полученные результаты сформулируем в виде следующих теорем:

Теорема 2.1.4. Пусть $-1/2 < \alpha < r - 1/2$, $\partial \Omega \in C^{s_0+1+\varepsilon}$, $0 < \varepsilon < 1$, и выполнены все условия теоремы 2.1.1. Тогда существует число $\lambda_0 \geq 0$ такое, что при $\lambda \geq \lambda_0$ для любого заданного функционала $F \in \left(\stackrel{\circ}{W}_{2;\alpha}^r(\Omega)\right)'$ существует единственное решение $U(x) \in W_{2;\alpha}^r(\Omega)$ задачи D_λ' и при этом выполняется оценка (13).

Теорема 2.1.5. Пусть $-1/2 < \alpha < r - 1/2$, $\partial \Omega \in C^{s_0+1+\varepsilon}$, $0 < \varepsilon < 1$, и выполнены все условия теоремы 2.1.3. Тогда для любого заданного функционала $F \in \left(\stackrel{\circ}{W}_{2;\alpha}^r(\Omega)\right)'$ существует единственное решение $U(x) \in W_{2;\alpha}^r(\Omega)$ задачи D_λ' при $\lambda = 0$ и при этом выполняется оценка (13)

Во втором параграфе второй главы изучается разрешимость вариационной задачи Дирихле с **неоднородными граничными условиями** для эллиптических операторов высшего порядка со степенным вырождением.

Рассматривается следующая полуторалинейная интегро-дифференциальная форма

$$B[u, v] = \sum_{|k|, |l| \le r} \int_{\Omega} b_{kl}(x) u^{(k)}(x) \overline{v^{(l)}(x)} dx, \tag{14}$$

где $b_{kl}(x)$ - комплекснозначные функции, на которых ниже накладываются некоторые условия, при выполнении которых B[u,v] принимает конечное значение для всех $u(x) \in W^r_{2;\alpha}(\Omega), \quad v(x) \in \overset{\circ}{W}^r_{2;\alpha}(\Omega)$.

Исследуется разрешимость следующей вариационной задачи Дирихле, связанной с формой (14).

Задача D. Для заданного функционала $F \in \left(\stackrel{\circ}{W}_{2;\alpha}^r(\Omega)\right)'$ и заданной функции $\Phi(x) \in W^r_{2;\alpha}(\Omega)$ требуется найти решение $U(x) \in W^r_{2;\alpha}(\Omega)$ уравнения

$$B[U, v] = \langle F, v \rangle \quad (\forall v \in C_0^{\infty}(\Omega)), \qquad (15)$$

удовлетворяющее условию

$$U(x) - \Phi(x) \in \overset{\circ}{W} {}^{r}_{2:\alpha}(\Omega). \tag{16}$$

Замечание 2.2.1. Если $\Phi(x) \not\in \overset{\circ}{W}^{r}_{2;\alpha}(\Omega)$, то условие (16) означает, что решение U(x) задачи D и заданная функция $\Phi(x)$ имеют одни и те же ненулевые следы на границе $\partial\Omega$ области Ω .

Вводится следующее обозначение:

$$(\mu)_+ = \mu$$
, если $\mu > 0$, $(\mu)_+ = 0$ при $\mu \le 0$.

Теорема 2.2.1. Пусть число α такое, что $\alpha \geq 0$, $\alpha + \frac{1}{2} \not\in \{1, 2, \cdots, r\}$, и пусть выполнены условия:

I) старшие коэффициенты $b_{kl}(x), |k| = |l| = r, формы (14)$ имеют вид

$$b_{kl}(x) = \rho^{2\alpha}(x)a_{kl}(x),$$

где функции $a_{kl}(x)$ непрерывны в замкнутой области $\overline{\Omega}$ и удовлетворяют условию эллиптичности

Re
$$\sum_{|k|=|l|=r} a_{kl}(x)\xi^k \xi^l \ge c_0 |\xi|^{2r}$$

для всех $x \in \Omega$, $\xi \in \mathbb{R}^n$ (c_0 – положительная постоянная независящая от x, ξ);

II) коэффициенты $b_{kl}(x)$ $npu |k|, |l| \le r u |k| + |l| \le 2r - 1$ npu надле $жат пространству <math>L_{\mu_{kl}, -\alpha_{kl}}(\Omega)$, $r de \mu_{kl} > 1 u$

$$\alpha_{kl} = -1 + \frac{1}{\mu_{kl}} + \varepsilon_0 + \left(\alpha - r + |k| + \frac{1}{2}\right)_+ + \left(\alpha - r + |l| + \frac{1}{2}\right)_+,$$

 $\epsilon \partial e \varepsilon_0 - \partial o c mamo ч ho мало e no ложительно e число;$

III) существует положительное число M_0 такое, что

$$\int_{\Omega} \rho^{2\alpha - 2r}(x)|v(x)|^2 dx \le M_0 \operatorname{Re} B[v, v]$$

для всех $v \in C_0^\infty(\Omega)$.

Тогда для любого заданного функционала $F \in \left(\stackrel{\circ}{W}_{2;\alpha}^r(\Omega)\right)'$ и заданной функции $\Phi(x) \in W^r_{2;\alpha}(\Omega)$ существует единственное решение $U(x) \in W^r_{2;\alpha}(\Omega)$ задачи D и при этом выполняется оценка

$$\left\|U; W_{2;\alpha}^{r}(\Omega)\right\| \leq M \left\{ \left\|F; \left(\stackrel{\circ}{W}_{2;\alpha}^{r}(\Omega)\right)'\right\| + \left\|\Phi; W_{2;\alpha}^{r}(\Omega)\right\| \right\},\,$$

где число M>0 не зависит от выбора функционала F и функции Φ .

Доказательство этой теоремы основано на применении теоремы 2.1.3 и следующих двух вспомогательных лемм.

Лемма 2.2.1. Пусть p > 1 и числа λ_{kl} , определенные для мультииндексов k, $l(|k| \le r, |l| \le r, |k| + |l| \le 2r - 1)$, такие, что $\lambda_{kl} > 1$, $1/\lambda_{kl} \le 2/p$. Тогда для всех u(x), $v(x) \in W^r_{p;\alpha}(\Omega)$ имеет место неравенство

$$\left\| u^{(k)}v^{(l)}; L_{\lambda_{kl},\alpha_{kl}}(\Omega) \right\| \ll \left\| u; W_{p;\alpha}^r(\Omega) \right\| \left\| v; W_{p;\alpha}^r(\Omega) \right\|,$$

где

$$\alpha_{kl} = -\frac{1}{\lambda_{kl}} + \varepsilon_1 + \left(\alpha - r + |k| + \frac{1}{p}\right)_+ + \left(\alpha - r + |l| + \frac{1}{p}\right)_+,$$

 $arepsilon_1$ - достаточно малое положительное число.

Лемма 2.2.2. Пусть выполнены условия теоремы 2.2.1. Тогда для любой заданной функции $\Phi(x) \in W^r_{2;\alpha}(\Omega)$ функционал G, определенный равенством

$$\langle G, v \rangle = -B[\Phi, v]$$

принадлежит пространству $\left(\stackrel{\circ}{W}_{2;\alpha}^{r}(\Omega)\right)'$ и при этом

$$\left\| G; \left(\stackrel{\circ}{W}_{2;\alpha}^{r}(\Omega) \right)' \right\| \leq M \left\| \Phi; W_{2;\alpha}^{r}(\Omega) \right\|,$$

где число M>0 не зависит от $\Phi(x)$.

Далее предположим, что $-1/2 < \alpha < r - 1/2$ и целое число s_0 такое, что

 $r - \alpha - \frac{1}{2} \le s_0 < r - \alpha + \frac{1}{2}.$

В этом случае задачу D можно сформулировать следующим образом **Задача** D'. Для заданного функционала $F \in \left(\stackrel{\circ}{W}_{2;\,\alpha}^r(\Omega)\right)'$ и заданного набора граничных функций

$$\varphi_s \in B_2^{r-\alpha-1/2-s}(\partial\Omega), \quad s = 0, 1, \dots, s_0 - 1,$$
 (17)

требуется найти решение U(x) уравнения (15) из пространства $W^r_{2;\alpha}(\Omega)$, удовлетворяющее граничным условиям

$$\frac{\partial^s U(x)}{\partial n^s} \bigg|_{\partial \Omega} = \varphi_s, \quad s = 0, 1, \cdots, s_0 - 1.$$
 (18)

Применяя теорему 2.2.1 получаем следующий результат о разрешимости задачи D'.

Теорема 2.2.2. Пусть $0 < \alpha < r - 1/2$, граница области $\partial \Omega$ принадлежит классу $C^{s_0+1+\varepsilon}$, $0 < \varepsilon < 1$, и выполнены все условия теоремы 2.2.1.

Тогда для любого заданного функционала $F \in \left(\stackrel{\circ}{W}_{2;\alpha}^r(\Omega)\right)'$ и заданного набора граничных функций (17) существует единственное решение U(x) задачи D' и при этом справедливо неравенство

$$\|U; W_{2;\alpha}^{r}(\Omega)\| \le M \left\{ \|F; \left(\overset{\circ}{W} _{2;\alpha}^{r}(\Omega) \right)' \| + \sum_{s=0}^{s_{0}-1} \|\varphi_{s}; B_{2}^{r-\alpha-1/2-s}(\partial\Omega) \| \right\},$$

где число M>0 не зависит от выбора функционала F и граничных функций (17).

Далее изучается разрешимость аналога вариационной задачи D_{λ} с неоднородными граничными условиями.

Задача D_{λ}^* . Для заданного функционала $F \in \left(\stackrel{\circ}{W}_{2;\alpha}^r(\Omega)\right)'$ и заданных граничных функций (17) требуется найти решение U(x) уравнения (11), принадлежащее пространству $W_{2;\alpha}^r(\Omega)$ и удовлетворяющее граничным условиям (18).

Теорема 2.2.3. Пусть $0 < \alpha < r - 1/2$ $\alpha + \frac{1}{2} \notin \{1, 2, \cdots, r\}$, граница области $\partial\Omega$ принадлежит классу $C^{s_0+1+\varepsilon}$, $0 < \varepsilon < 1$, и пусть выполнены условия I) и II) теоремы 2.2.1.

Тогда существует неотрицательное число λ_0 такое, что при $\lambda \geq \lambda_0$ для любого заданного функционала $F \in \left(\stackrel{\circ}{W}_{2;\alpha}^r(\Omega)\right)'$ и заданного набора граничных функций (17) существует единственное решение U(x) задачи D_{λ}^* и при этом справедливо неравенство

$$\|U; W_{2;\alpha}^{r}(\Omega)\| \le M \left\{ \|F; \left(\overset{\circ}{W} _{2;\alpha}^{r}(\Omega) \right)' \| + \sum_{s=0}^{s_{0}-1} \|\varphi_{s}; B_{2}^{r-\alpha-1/2-s}(\partial\Omega) \| \right\},$$

где число M>0 не зависит от λ от выбора функционала F и граничных функций (17).

В третьей главе диссертационной работы изучаются некоторые спектральные свойства эллиптических операторов высшего порядка в ограниченной области со степенным вырождением на границе. Она состоит из трех параграфов. В первом параграфе изучаются разрешимости вариационной задачи на собственные значения и фредгольмовость неоднородной вариационной задачи с однородными граничными условиями для вырождающихся эллиптических операторов в ограниченной области. Случай неоднородных граничных условий рассматривается во втором параграфе. В третьем параграфе изучается асимптотика распределения собственных значений эллиптических операторов в ограниченной области со степенным вырождением на границе.

Также как в первом параграфе второй главы, рассматривается вырождающийся дифференциальный оператор (6) и связанная с ним полуторалинейная интегро-дифференциальная форма (7).

Задача \mathbb{D}_{λ} . Для заданного функционала $F \in \left(\stackrel{\circ}{W}_{2;\alpha}^{r}(\Omega)\right)'$ требуется найти решение U(x) уравнения

$$B[U, v] + \lambda \int_{\Omega} U(x)\overline{v(x)}dx = \langle F, v \rangle \qquad (\forall v \in C_0^{\infty}(\Omega)),$$

принадлежащее пространству $\overset{\circ}{W} _{2;\alpha}^{r}(\Omega)$.

Чтобы сформулировать результат о фредгольмовости задачи \mathbb{D}_{λ} также рассматриваются связанные с ней однородная и формально сопряженные задачи.

Задача \mathbb{D}^0_λ . Требуется найти решение U(x) уравнения

$$B[U, v] + \lambda \int_{\Omega} U(x)\overline{v(x)}dx = 0 \qquad (\forall v \in C_0^{\infty}(\Omega)),$$

принадлежащее пространству $\overset{\circ}{W}_{2;\alpha}^{r}(\Omega)$.

Задача \mathbb{D}_{λ}^* . Для заданного функционала $G \in \left(\stackrel{\circ}{W}_{2;\,\alpha}^r(\Omega)\right)'$ требуется найти решение V(x) уравнения

$$B^{+}[V, v] + \overline{\lambda} \int_{\Omega} \overline{V(x)} v(x) dx = \langle G, v \rangle \qquad (\forall v \in C_0^{\infty}(\Omega)),$$

принадлежащее пространству $\stackrel{\circ}{W}_{2;\alpha}^{r}(\Omega)$. Задача $\mathbb{D}^{0*}_{\lambda}$. Требуется найти решение V(x) уравнения

$$B^{+}[V, v] + \overline{\lambda} \int_{\Omega} \overline{V(x)} v(x) dx = 0 \qquad (\forall v \in C_0^{\infty}(\Omega)),$$

принадлежащее пространству $\overset{\circ}{W} _{2;\alpha}^{r}(\Omega)$.

Здесь и далее $B^+[u, v] = \overline{B[v, u]}$.

Теорема 3.1.1. Пусть $r - \alpha > 0$, $\alpha + 1/2 \notin \{1, 2, ..., r\}$ и

$$\int_{\Omega} \rho^{2\alpha-2r}(x)|v(x)|^2 dx \le M_0 \operatorname{Re} B[v, v] \quad \text{dis } \operatorname{ecex} v \in C_0^{\infty}(\Omega).$$

Пусть также выполнены условия:

I) коэффициенты $a_{kl}(x)$ формы (7) $npu\ |k|=|l|=r$ непрерывны в $\overline{\Omega}$ и удовлетворяют следующему условию эллиптичности

Re
$$\sum_{|k|=|l|=r} a_{kl}(x)\xi^k \xi^l \ge c_0 |\xi|^{2r}$$

для всех $x \in \Omega, \, \xi \in \mathbb{R}^n$ (c_0 – положительная постоянная независящая om x, ξ);

II) коэффициенты $a_{kl}(x)$ $npu |k|, |l| \le r u |k| + |l| \le 2r - 1 принад$ лежат пространству $L_{p_{kl};-n/p_{kl}}(\Omega)$, где числа p_{kl} определяются соотношениями:

$$p_{kl} = \begin{cases} \frac{n}{r - |k|} + \varepsilon, & |l| = r, & n > 2(r - |k|), \\ \frac{n}{r - |l|} + \varepsilon, & |k| = r, & n > 2(r - |l|); \end{cases}$$

если $|k| \le r - 1, |l| \le r - 1, mo$

$$p_{kl} = \begin{cases} \frac{n}{2r - |k| - |l|} + \varepsilon, & n > 2(r - |k|), & n > 2(r - |l|), \\ \frac{n}{r - |l| + \varepsilon}, & n \le 2(r - |k|), & n > 2(r - |l|), \\ \frac{n}{r - |k| + \varepsilon}, & n > 2(r - |k|), & n \le 2(r - |l|); \end{cases}$$

 p_{kl} — любое конечное число больше 2 в оставшихся случаях. Здесь ε — достаточно малое положительное число. Тогда задача \mathbb{D}_{λ} фредгольмова, то есть:

- 1) задача \mathbb{D}^0_{λ} имеет отличные от нуля решения (обобщенные собственные функции) только для счетного числа значений параметра $\lambda = \lambda_j, \ j = 1, 2, \ldots$ (собственные значения) и только ∞ будет предельной точкой этих значений;
- 2) отвечающее каждому собственному значению λ_j подпространство обобщенных собственных функций собственное подпространство конечномерно;
- 3) у сопряженной задачи $\mathbb{D}_{\lambda}^{0*}$ собственные значения равны $\overline{\lambda_{j}},\,j=1,2,\ldots;$
- 4) собственные подпространства задач \mathbb{D}^0_{λ} и $\mathbb{D}^{0*}_{\lambda}$, отвечающие собственным значениям λ_j и $\overline{\lambda_j}$, имеют одинаковую размерность;
- 5) для того чтобы задача \mathbb{D}_{λ} имела хоть одно решение необходимо и достаточно, чтобы для любого решения v(x) задачи $\mathbb{D}_{\lambda}^{0*}$ выполнялось условие $\langle F, v \rangle \equiv 0$;
- 6) для того чтобы задача \mathbb{D}_{λ}^* имела хоть одно решение необходимо и достаточно, чтобы для любого решения u(x) задачи \mathbb{D}_{λ}^0 выполнялось условие $\langle G, u \rangle \equiv 0$.

Далее в работе изучается случай, когда условие $r-\alpha>0$ теоремы 3.1.1 может не выполняться.

Во втором параграфе третьей главы доказывается аналог теоремы 3.1.1 в случае соответствующих вариационных задач с неоднородными граничными условиями.

В третьем параграфе третьей главы исследуются асимптотика собственных значений вырождающегося эллиптического оператора (6). Доказывается следующая теорема:

Теорема 3.3.1. Пусть $0 \le \alpha < r$ и выполнены все условия теоремы 3.1.1. Тогда оператор L имеет дискретный спектр и для собственных значений λ_j оператора L выполняется следующее условие

$$\sum_{j=1}^{\infty} |\lambda_j|^{-\gamma/2} < \infty,$$

где γ – любое число, удовлетворяющее неравенству $\gamma > n/(r-\alpha)$.

Следствие 3.3.1. В условиях теоремы 3.3.1 собственные значения λ_j дифференциального оператора L удовлетворяют неравенству

$$j^{2/\gamma} < |\lambda_j|$$

при достаточно больших натуральных j. Здесь γ — такое же число, как в теореме 3.3.1.

РАБОТЫ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ

В изданиях из перечня ВАК:

- 1. Исхоков С.А., Нематуллоев О.А. О разрешимости однородной вариационной задачи Дирихле для вырождающихся эллиптических операторов в ограниченной области. // Доклады АН Республики Таджикистан, 2012, т. 55, №8, с. 617-621.
- 2. Исхоков С.А., Нематуллоев О.А. О разрешимости вариационной задачи Дирихле с неоднородными граничными условиями для вырождающихся эллиптических операторов в ограниченной области. // Доклады АН Республики Таджикистан, 2013, т. 56, №5, с. 352-358.
- 3. Исхоков С.А., Нематуллоев О.А. О собственных функциях и собственных значениях одного класса вырождающихся эллиптических операторов высшего порядка.// Доклады АН Республики Таджикистан, 2014, т. 57, №7, с. 551-555.

В других изданиях:

- 4. Исхоков С.А., Нематуллоев О.А. О собственных функциях и собственных значениях одного класса вырождающихся эллиптических операторов высшего порядка. //Сб. докладов "Наука и инновационные разработки–северу", Мирный, 12-14 марта 2014 г. С. 523-526.
- 5. Исхоков С.А., Нематуллоев О.А. О собственных функциях и собственных значениях одного класса вырождающихся эллиптических операторов высшего порядка // Материалы международной научной конференции "Современные проблемы математики и её преподавания", Худжанд, 28- 29 июня 2014 г. с.176-179.
- 6. Исхоков С.А., Нематуллоев О.А. О фредгольмовой разрешимости неоднородной вариационной задачи Дирихле для вырождающихся эллиптических уравнений // Материалы международной научной конференции "Математический анализ, дифференциальные уравнения и теория чисел", Душанбе, 29- 30 октября 2015 г. с.107-110.